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Abstract 

 

Wind fields retrieved from high-resolution synthetic aperture radar (SAR) images are 

valuable in wind resource assessment offshore. In contrast to in situ measurements, 

SAR wind maps provide spatial information which allows wind farm developers to 

compare the wind resource for different sites. Further advantages include the 

opportunity to obtain archived data and a low cost of satellite based assessments 

compared to the cost of installing a meteorological mast offshore. Using accurate inputs 

of wind speed is crucial in wind resource assessment, as predicted power is proportional 

to the wind speed cubed. Wind speeds retrieved from a series of 97 high-resolution 

ERS-2 SAR and Envisat ASAR images, at moderate wind speeds (2-15 m s-1), were 

validated against in situ measurements from an offshore mast in the North Sea. The 

wind direction input, necessary for SAR wind speed retrievals, was obtained from the 

meteorological mast and from a local gradient analysis of streaks in the SAR images. 

For the first method, a standard deviation of ~1.1 m s-1 was found. The second method, 

which worked independently of in situ measurements, yielded a standard deviation of 

~1.3 m s-1. The performance of three geophysical model functions was compared. The 

best approximation to the in situ measurements of wind speed was found for CMOD-

IFR2, despite a bias on the order of -0.3 m s-1. CMOD4 retrievals also underestimated 

the wind speed, whereas the bias on CMOD5 retrievals was negligible. The accuracy on 

SAR wind retrievals improved as cases with a long fetch and near-neutral atmospheric 

stability were analyzed separately. The mean wind speed, obtained from the 97 SAR 

scenes, was linked closely to the bias on SAR wind retrievals. Agreement to ±15% of 

the in situ measurements was found for all the wind retrieval methods tested. The 
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accuracy on power density estimates, on the other hand, was determined by the standard 

deviation of SAR wind retrievals relative to the in situ measurements. SAR wind fields 

retrieved with CMOD-IFR2, using in situ wind direction inputs, yielded exactly the 

power density predicted from in situ measurements alone. Predictions of the wind 

resource from SAR measurements corresponded well to predictions from longer time 

series of in situ measurements. This indicates that a reliable wind resource assessment 

may be achieved from a series of randomly selected SAR images. The findings 

presented here could be useful in future wind resource assessment based on SAR 

images.  
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1.  Introduction 

 

Finding the optimum wind resource is crucial in the planning of new wind farms, as the 

wind climate determines the energy production. The mean power density, E [W m-2] of 

the wind is given by: 

 

3
2
1 UE ρ=           (1) 

 

where ρ [kg m-2] is the air density and U [m s-1] is the mean wind speed. Accurate 

estimates of the mean wind speed are thus vital for a reliable wind power prediction 

(Troen & Petersen, 1989).  

 

Wind maps retrieved from synthetic aperture radar (SAR) data have proven useful in 

offshore wind resource assessment (Choisnard et al., 2004; Hasager et al., 2005; 

Schneiderhan et al., 2005). SAR wind maps provide high-resolution spatial information, 

which cannot be gathered from meteorological measurements. Further advantages 

include the low cost of SAR images, compared to the cost of installing and operating an 

offshore meteorological mast, and the opportunity to obtain archived data. The high 

accuracy of modern meteorological measurements cannot be achieved with a SAR. 

Hence, using SAR data is most viable in the early stage of wind farm siting, before in 

situ measurements are available. In this paper, we address the application of SAR data 

in wind resource assessment. 

 

* Manuscript
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SAR is an active microwave remote sensing technique. The radar signal emitted from a 

SAR is partly returned from the Earth surface through Bragg scattering. The 

backscattering depends on surface roughness elements comparable in size to the radar 

wavelength. Here we are concerned with wind retrievals offshore from the C-band (5.3 

GHz) SAR sensors on board the ERS-2 and Envisat satellites operated by the European 

Space Agency (ESA). The polar-orbiting satellites were launched in 1995 and 2002, 

respectively, and both are presently in orbit. The principle of C-band SAR wind 

retrieval is that the wind generates small scale roughness at the sea surface in the form 

of capillary-gravity waves. The instant wind is proportional to the returned radar signal 

per area, which is the normalized radar cross section, NRCS. 

 

Geophysical model functions (GMFs) have been developed to empirically identify the 

relationship of wind speed at 10 m to NRCS, which depends on the wind direction 

relative to the radar look direction and on the radar incidence angle. A series of GMFs 

known as the CMOD functions were originally developed for global coverage 

scatterometer wind retrievals in C-band (Hersbach, 2003; Quilfen et al., 1998; Stoffelen 

& Anderson, 1997). Later, the CMOD functions have been successfully applied to wind 

retrievals from high-resolution SAR images; a review is provided by Monaldo & 

Kerbaol (2003). The CMOD functions apply to SAR data acquired with vertical 

polarization but it is possible to account for the lower NRCS of horizontally polarized 

SAR data through multiplication with a polarization ratio e.g. Thompson et al. (1998).  

 

Scatterometers are capable of acquiring multiple NRCS images simultaneously, which 

allows determination of both wind speed and direction. SAR images, in contrast, are 
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acquired with a single look angle such that several wind speed and direction pairs 

correspond to a given NRCS. It is therefore necessary to know the wind direction a 

priori in order to determine the wind speed. Wind directions may be obtained from 

atmospheric models (Monaldo, 2000; Monaldo et al., 2001), scatterometry (He et al., 

2005; Monaldo et al., 2004), or in situ measurements (Hasager et al., 2004). In addition, 

it is possible to extract the wind direction from streaks in the SAR images. The streaks 

originate from roll vortices aligned approximately with the wind direction. Methods to 

determine the streak direction include FFT (Furevik et al., 2002; Gerling, 1986; Lehner 

et al., 1998), wavelet analysis (Du et al., 2002; Fichaux & Ranchin, 2002) and local 

gradients (Horstmann et al., 2002a; Koch, 2004). The 180° ambiguity associated with 

these methods may be removed through comparison with other data sources or through 

a study of wind shadows in the images. There is usually a trade-off between the 

accuracy of wind direction estimates and the degree of automation in the process of 

determining the directions. In situ measurements and image streaks have the advantage 

of being correlated in time with satellite overpasses, and are therefore particularly 

attractive data sources.  

 

Wind speeds of 2-24 m s-1 can be retrieved with the nominal accuracy ±2 m s-1 for radar 

incidence angles of 20-60° using the scatterometer approach (Stoffelen & Anderson, 

1997). The approach applies to open oceans and validation studies have shown that 

ocean winds retrieved from high-resolution SAR correspond well to scatterometer 

measurements (Horstmann et al., 2003; Monaldo et al., 2004). High-resolution SAR 

wind retrievals have also been evaluated for near-shore areas. Monaldo et al. (2001) 

found a standard deviation of 1.8 m s-1 for comparisons of horizontally polarized 
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RADARSAT wind retrievals to buoy measurements along the US east coast using 

CMOD4. Furevik et al. (2002) compared ERS-2 SAR wind retrievals along the 

marginal ice zone of Svalbard to measurements from ships. They found an rms error of 

1.6 m s-1 using CMOD-IFR2 and a larger rms error for CMOD4. Hasager et al. (2004) 

validated CMOD-IFR2 and CMOD4 wind retrievals against measurements from an 

offshore meteorological mast in the North Sea. A standard error of 0.9 m s-1 was found 

for CMOD4 wind retrievals using in situ wind direction inputs. The same GMF used 

with FFT-derived wind directions resulted in a standard error of 1.3 m s-1. The most 

recent GMF is CMOD5, which was developed to improve scatterometer wind retrievals 

at very high winds (Hersbach, 2003). Horstmann et al. (2005) tested the performance of 

this GMF at hurricane wind speeds retrieved from SAR and found it more suitable than 

CMOD4, as it copes better with saturation of NRCS at high winds. Figure 1 shows the 

relationship of NRCS to wind speed for CMOD-IFR2, CMOD4, and CMOD5. At 

moderate wind speeds (< 15 m s-1), a given NRCS may translate to wind speeds 

differing by more than 1 m s-1 for the three GMFs. Such differences are significant in 

terms of wind power prediction. It is thus important to determine the optimal choice of 

GMF for accurate SAR wind retrievals.  

 

Validation studies of SAR-retrieved winds against scatterometer measurements cannot 

reveal the GMF accuracy, as the scatterometer winds are retrieved from similar GMFs. 

In situ measurements from buoys and ships may be distorted due to blockage or motion 

of the sensor (Brown, 2000b). Ideally, SAR winds should be validated against in situ 

measurements from a mast with minimum flow distortion. High-quality meteorological 

measurements are obtained at most offshore wind farm sites. However, validation 
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studies based on such measurements are rare, as meteorological data from wind farm 

sites are often confidential.  

 

In this paper, we validate wind speeds retrieved from a series of C-band satellite SAR 

images against in situ measurements obtained from an offshore meteorological mast at 

Horns Rev in the North Sea. SAR winds are retrieved from the geophysical model 

functions CMOD-IFR2, CMOD4, and CMOD5 using wind directions obtained from in 

situ measurements and image streaks, respectively. The latter encompasses the local 

gradient method of Koch (2004). Careful consideration is necessary, as satellite 

snapshots are compared to in situ measurements averaged over time. Conceptually, 

scalar footprint averaging is the correct approach (Hasager et al., 2004; Nielsen et al., 

2004). We also test a simple box averaging method for extraction of SAR winds from 

the area surrounding the meteorological mast at Horns Rev.  

 

The study site is located 14-21 km offshore and 2 km from a large offshore wind farm. 

SAR and in situ observations may thus be affected by internal boundary layers from the 

land (Garrat, 1990), interplaying with atmospheric stability effects (Stull, 1991). In 

addition, wind farm wake effects may impact our results (Christiansen & Hasager, 

2005; 2006). The influence of these atmospheric parameters on SAR wind retrievals is 

quantified. Our systematic analysis aims to reveal the optimum method of SAR wind 

retrieval for wind power prediction. Finally, we discuss the concept of wind resource 

assessment from SAR images in proportion to traditional assessments from time series 

of meteorological measurements. Our findings could be valuable for those who wish to 

include satellite images in offshore wind resource assessment studies. 
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2.  Data analysis 

 

The offshore site Horns Rev in the North Sea (Figure 2) has been subject to intensive 

studies since 1998 when it was decided to build the world’s first large scale offshore 

wind farm there. An offshore meteorological mast was erected in 1999. The wind farm, 

consisting of 80 turbines, became operational in December 2002. We have collected 97 

ERS-2 and Envisat SAR images from Horns Rev over the period 1999-2005. Envisat 

scenes acquired in WSM mode cover 400 km x 400 km with a spatial resolution of ~100 

m. All other scenes cover approximately 100 km x 100 km with a spatial resolution of 

~30 m (Attema et al., 2000). 

 

2.1.  SAR wind retrieval 

Winds were retrieved from the SAR images with the operational tool WiSAR developed 

at GKSS Research Center, Germany. The tool handles calibration to NRCS, wind 

direction retrieval using the local gradient (LG) method, and wind speed retrieval with 

CMOD-IFR2, CMOD4, and CMOD5. To retrieve wind directions, the 97 SAR images 

were divided into 10 km grid cells. Within each grid cell, local gradients of NRCS were 

computed at the scales 100 m, 200 m, and 400 m. Wind directions were assumed to be 

perpendicular to the local gradient of NRCS, especially at the smaller scales. Land was 

masked out of the images, as were other image features causing local gradients too steep 

to be associated with the wind. Examples of such features include wind turbines, ships, 

surfactants, and bathymetry. Several wind directions were typically suggested by the 

program for each grid cell. This was due to a 180° ambiguity and because a solution 
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was given for each scale. The appropriate wind direction input was selected manually 

according to streaks and wind shadows visible in the images. A second selection of 

wind directions was made automatically through comparison with model data. For the 

period 1999-2003, re-analysis data (ReMo) were available for the comparison. For 

2004-2005, atmospheric model data provided by the German Weather Service (DWD) 

were used. The model data had a 6-hour temporal resolution. 

 

For wind speed retrievals, the original NRCS images were reduced to eliminate effects 

of speckle noise and longer period waves on the wind retrievals. We chose a pixel size 

of 500 m as recommended by Horstmann et al. (2000). The LG wind directions, found 

through supervised and automatic image analysis, respectively, were re-sampled to 

match the NRCS images. The model functions CMOD-IFR2, CMOD4, and CMOD5 

were run for each image with the two types of wind direction input. In addition, the 

model functions were run using wind directions from the meteorological mast at Horns 

Rev as input (see section 2.2 for details). The end result was nine different estimates of 

wind speed per pixel in the SAR images.  

 

2.2.  In situ measurements 

The meteorological mast at Horns Rev is 62 m tall and operated by Elsam A/S. Wind 

speed (15, 30, 45, and 60 m), wind direction (62 m), and air temperature (13 and 55 m) 

are sampled at 1Hz and stored as 10-minute mean values. The error on measured wind 

speeds is <0.1 m s-1. Wind speed at the three lower levels is measured simultaneously at 

both ends of a boom with the alignment 45°/225°. Wind shadowing from the mast was 

avoided by consequently selecting the upwind anemometer. No correction for 
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atmospheric stability or tidal sea level variations was made. The effect of such 

corrections has previously been found negligible for the site (Hasager et al., 2004). In 

situ measurements were averaged over one hour centred at the time of each satellite 

overpass to eliminate short-term fluctuations in the wind. The logarithmic velocity 

profile e.g. Stull (1991) was used to compute wind speeds at 10 m, corresponding to the 

SAR-retrieved winds. Practically, the logarithmic measurement heights were plotted as 

a function of wind speed and a linear fit was made. The 10 m wind speed was then 

extracted.  

 

To determine the atmospheric stability at the acquisition time of each SAR scene, we 

computed the bulk Richardson number, RiB from wind speed and air temperature 

gradients measured at the meteorological mast: 
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where g  [m s-2] is the acceleration due to gravity, T [K] is absolute temperature at a 

given height (z1 in our case) and θ [K] is potential temperature, which is derived from T 

using the adiabatic lapse rate (-0.01 K m-1). The measurement heights were z1 = 55 m, z2 

= 13 m, z3 = 62 m, and z4 = 15 m. Estimates of atmospheric stability were valid at 55 m. 

The following intervals were defined: RiB < -0.4 for unstable atmospheres, -0.4 ≤ RiB ≤ 

0.1 for near-neutral atmospheres, and RiB > 0.1 for stable atmospheres. 
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2.3.  Comparison of SAR and in situ wind fields 

SAR-retrieved wind fields were compared to measurements from the meteorological 

mast at Horns Rev using a scalar footprint approach. A scalar footprint is a response 

function based on dispersion theory, which quantifies the relative significance of 

distributed surface conditions at an elevated point in the atmospheric boundary layer. 

The weighted footprint of (Gash, 1986) was used to define the effective fetch, XF [m] 

upstream of the meteorological mast: 

 




















+−









−=

100
ln

1ln

2

0

0

F
z

z
z
zz

X F
κ

         (3) 

 

where F [%] is the percentage effective fetch, z0 [m] is the roughness length, z [m] is the 

measurement height, and κ is von Karman’s constant. The footprint of Gash (1986) 

applies to neutral atmospheric conditions and is the preferred footprint when stability 

information is unavailable (Nielsen et al., 2004). The footprint theories by Hsieh et al. 

(2000) and Horst & Weil (1994) takes atmospheric stability into account, but they 

require temperature gradients, which generally are unavailable for remote sensing 

applications. 

 

Eq. (3) defines the upwind variation of a cross-wind integrated footprint, and according 

to dispersion theory the cross-wind variation is equal to that of a spreading plume, i.e. 

with a Gaussian profile (Horst & Weil, 1994). The upwind development of the length 

scale of the cross-wind profile is predicted by the model of Gryning et al. (1987). For 

each SAR image, a response function was evaluated by the observed wind speed and 
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direction and used to calculate a weighted average of pixel values upstream the mast. 

For the measurement height 10 m, the 90% effective fetch was 2.3 km for z0 = 0.2 mm. 

 

In addition to footprint averaging, we used simple box averaging to obtain mean winds 

for the area surrounding the meteorological mast at Horns Rev. Pixels were averaged 

within a 5 km square box centered at the meteorological mast. In some cases, 

bathymetry effects were visible within the box. To eliminate these effects, box 

averaging was repeated using the mask that was defined during the computation of local 

gradients. The mask covered areas with a very large gradient of NRCS. Wind turbines 

generate direct scattering, which is not associated with the wind. To avoid any 

contribution from wind turbine scattering, a polygon mask was defined over the wind 

turbine array. Pixels located within the polygon were eliminated, both from the scalar 

footprint and the box averaging. The wind farm polygon and the box used for pixel 

averaging are seen in Figure 3. 

 

2.4.  Wind resource assessment 

The Risø Wemsar Tool (RWT) has been developed for wind resource assessment based 

on SAR-retrieved wind maps. The principle is to combine multiple SAR wind maps for 

computation of wind statistics over an area of interest defined by the user. The 

computation follows state-of-the-art procedures of wind power prediction from the 

Wind Atlas Analysis and Application Program (WAsP, see www.wasp.dk). A Weibull 

fit, defined by a scale parameter (A) and a shape parameter (k), is made to frequency 

observations of wind speed (u): 
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A further description of the Weibull distribution applied to wind resource assessment is 

given by Troen & Petersen (1989). SAR wind retrievals are valid at 2-24 m s-1. 

However, to make a correct Weibull fit; all wind speeds that are likely to occur at a site 

must be represented. To overcome this problem, RWT features an opportunity to type in 

the number of samples deselected due to high or low wind speeds. These samples are 

then taken into account in the fitting. RWT computes the mean wind speed (U) and the 

power density (E), and users have the opportunity to implement ground truth data for 

comparison studies using various footprint methods e.g. Gash (1986). RWT requires 

input arrays of wind speed and direction and a header file containing geo-information. 

In our case, the nine different wind fields computed with WiSAR were analyzed for the 

parameters U, A, k, and for E assuming a constant air density of 1.23 kg m-3 (Eq. 1).  

 

3.  Results 

 

3.1.  Wind direction retrievals 

Figure 3 shows an example of a SAR wind speed map. Streaks are visible in the image, 

indicating the wind direction. In addition, orthogonal internal waves are seen at the top 

left image corner. Arrows show the wind direction measured at the meteorological mast 

(white) and wind directions retrieved with the LG method for the automatic runs 

(black). The local gradients deviate by ~10° from the in situ measurements and the 

orientation of visible wind streaks in the example. However, they still give a good 
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approximation of the wind direction. The internal waves did not impact the LG 

retrievals. 

 

Wind directions estimated from local gradients are plotted in Figure 4 against in situ 

wind directions for scenes with wind speeds above 5 m s-1. At lower wind speeds, in 

situ measurements of the wind direction may not be accurate. The plots show that wind 

directions were distributed over the full spectrum of 0-360°. For the supervised runs, a 

standard deviation (SD) of 21° and a correlation coefficient (R2) of 0.95 was found 

between the LG and in situ wind directions. For the fully automatic runs, SD was 33° 

and R2 was 0.87. Manual supervision of the LG retrievals thus led to a gain of accuracy 

on the wind direction estimates. Three outliers are seen for the automatic LG retrieval 

(Figure 4b). Two were associated with a weather front in the SAR images, confusing 

the automatic wind vector retrieval. For the third sample, bathymetry was clearly visible 

in the SAR image, impacting both the manual and the automatic LG wind direction. 

Eliminating the three outliers resulted in an improvement of SD to ~18° for both types 

of LG retrieval.  

 

Figure 5 summarizes the wind distributions found from in situ measurements and the 

two different LG wind direction retrievals. All three methods suggest that winds from 

the southeast were prevailing with contributions of 15-18%. Large contributions (> 

10%) were also found from the south-westerly sectors. The in situ data showed a high 

frequency at 300° (13%), whereas both LG retrievals yielded large contributions at 330° 

(9-13%). Contributions from west were remarkably low in all three cases, compared to a 

longer time series of data from Horns Rev. Observations of the wind climate at the 



 13 

meteorological mast for the period April 1999 to November 2002 have been published 

by Sommer (2003). For the 3.5 years of measurements, winds from the directions 210-

300° show almost equal prevalence (~12%). A significant contribution (9%) is reported 

for the sector centred at 120°, which confirms that south-easterly directions are 

important at Horns Rev. 

 

3.2.  Wind speed retrievals 

Table 1 shows results of correlation analyses between SAR-retrieved and in situ wind 

speeds. The matrix contains results for the three different wind direction inputs, the 

three geophysical model functions, and the three comparison methods used. Also 

contained is the estimated mean wind speed, the Weibull A and k parameters, and the 

power density (see section 3.7 for description).  

 

Wind speeds retrieved from SAR with in situ wind direction inputs yielded the best 

correlation with in situ wind speeds. A SD of 1.11 m s-1 with R2 = 0.89 was found for 

CMOD-IFR2 using the box averaging method. Only a slight improvement of SD was 

found when a mask was implemented during the box averaging. However, the bias 

changed from -0.27 to -0.36, indicating that bright pixels were removed by the mask. 

The scalar footprint averaging method led to a SD of 1.44 m s-1 with R2 = 0.83. The 

reason for the lower accuracies found from footprint averaging may be that fewer 

samples were obtained within the footprint compared to the 5 km square box. Moreover, 

the relatively small amount of pixels located within the 10% effective fetch of the 

meteorological mast was weighed very high in our footprint analysis. To increase the 

size of the scalar footprints the analysis was repeated, changing the height (z) in Eq. (3) 
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to 30 m with all other parameters constant. This resulted in an effective fetch of 21 km 

(90%). Our results did not improve significantly with the increased fetch, presumably 

because the fetch was limited by the coastline or the image border in several cases.  

 

Wind speeds retrieved from the model functions CMOD-IFR2, CMOD4, and CMOD5 

with in situ wind direction inputs are plotted against in situ wind speeds in Figure 6. The 

results were obtained from the box averaging method but trends were similar for box 

averaging using a mask, and for the footprint averaging (Table 1). CMOD-IFR2 wind 

retrievals yielded the minimum SD (1.11 m s-1) and the maximum R2 (0.89). SD was 

higher for CMOD5 (1.34 m s-1) than for CMOD4 (1.21 m s-1) but CMOD4 wind 

retrievals were better correlated with the in situ measurements than CMOD5 retrievals. 

CMOD-IFR2 and CMOD4 wind retrievals were negatively biased, whereas the bias was 

negligible for the CMOD5 retrievals.  

 

A noticeable difference in SAR-retrieved wind speeds from the three model functions 

occurred for two incidents with in situ wind speeds of ~15 m s-1 (Figure 6). One of these 

incidents showed a wind speed of ~22 m s-1 retrieved from CMOD5. This particular 

satellite scene was acquired with the SAR looking almost directly into the wind. As 

seen from Figure 1, CMOD5 wind speed retrievals deviate from those of CMOD-IFR2 

and CMOD4 for wind speeds > 15 m s-1, looking upwind. A small increase of NRCS 

may lead to a very large increase of the predicted wind speed from CMOD5. In our 

correlation analysis, the wind speed retrieved with CMOD5 for one satellite scene 

contributed largely to the standard deviation found for this model function. Eliminating 
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the outlier improved the SD of CMOD5 to 1.13 m s-1 (i.e. nearly equal to CMOD-IFR2 

retrievals but without a bias).  

 

The standard deviation of SAR-retrieved wind speeds increased when wind directions 

were obtained from LG image analysis instead of in situ measurements. The minimum 

SD on wind speed, found using wind direction inputs from the supervised LG method, 

was 1.26 m s-1 with R2=0.83. The corresponding SD found using wind direction inputs 

retrieved automatically was 1.51 m s-1 with R2=0.77. In the following, we investigate 

the effect of internal boundary layers, atmospheric stability and wind farm wakes for 

SAR scenes acquired with a wind speed > 2 m s-1. We also compare wind retrievals for 

SAR scenes with the spatial resolution ~30 m and ~100 m to determine how the choice 

of raw data impacts SAR wind retrievals. 

 

3.3.  Internal boundary layer effects 

To quantify possible effects of internal boundary layers from the land, SAR scenes 

acquired with offshore winds were separated from scenes acquired with onshore winds. 

The Danish coastline facing the North Sea is aligned approximately from north to south. 

Wind directions ranging 0-180° from north were considered offshore and directions 

ranging 180-360° from north were considered onshore. A total of 49 SAR scenes 

appeared in the onshore bin, whereas 42 scenes appeared in the offshore bin. 

Computation of wind statistics was performed separately on the offshore and onshore 

data bins. As seen from Table 2, SD and R2 were almost equal for the two bins, which 

suggests that scenes acquired with onshore and offshore winds were equally valid for 

the wind resource assessment study at Horns Rev. The bias, in contrast, was -0.52 m s-1 
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for offshore winds and only -0.06 m s-1 for onshore winds. This indicates that bias 

associated with our SAR wind retrievals may originate partly from internal boundary 

layers due to the proximity of land. 

 

3.4.  Atmospheric stability effects 

According to the bulk Richardson number (RiB), unstable atmospheric conditions 

occurred for 57% of the cases studied, whereas near-neutral and stable cases represented 

24% and 19%, respectively. The SAR scenes were binned according to these intervals 

and comparisons of the SAR-derived and in situ wind speeds were made for each bin. 

Table 2 shows that the SD found for near-neutral stability (0.95 m s-1) was lower than 

SD found for unstable (1.06 m s-1) and stable (1.47 m s-1) conditions. R2 was 0.93 for 

near-neutral stability, which was higher than for any other selection of SAR scenes.  

 

Scenes with stable conditions showed a relatively large negative bias (-0.86 m s-1). The 

bias may result from a low wind stress at the sea surface, which is characteristic for 

highly stratified atmospheric boundary layers. Wind speeds from SAR were thus 

underestimated relative to the true 10-meter wind speeds measured at the mast. Similar 

results have been found from real aperture radar measurements by Dankert et al. (2003). 

Unstable conditions showed a smaller negative bias (-0.26 m s-1). Normally, a high 

degree of atmospheric mixing compared to neutral conditions would lead to an 

overestimation of the wind speed at a given height according to the logarithmic profile 

law. In our case, unstable atmospheric conditions may have affected both the 

extrapolation of in situ measurements down to 10 m and the SAR wind retrievals. The 
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small negative bias found here may also result from parameters other than atmospheric 

stability. 

 

Figure 7 illustrates the coupling between atmospheric stability, wind speed, and fetch 

length, as obtained from our dataset. Very stable and unstable conditions occurred at 

relatively low wind speeds in line with measurements from other meteorological 

stations in Denmark (Motta et al., 2005). The most extreme values of RiB, both for 

stable and unstable conditions, were found for offshore winds. Of the samples acquired 

with onshore winds, 66% showed near-neutral atmospheric conditions.  

 

3.5.  Wind farm wake effects 

The meteorological mast is located 2 km from the wind farm at Horns Rev. It is thus 

possible that both SAR and in situ measurements experienced some influence of the 

wind farm in situations when the mast was located downwind of the wind turbines. A 

total of 46 SAR scenes were acquired before the wind farm at Horns Rev became 

operational in December 2002. This group of scenes was validated against in situ 

measurements, as was the group of 45 scenes acquired with turbines in operation. Table 

2 shows an increase of SD from 0.93 to 1.20 m s-1 and a slight decrease of R2 after the 

wind farm was build. To determine the effect of wind wakes further, 27 situations 

where the meteorological mast was located downwind of the wind farm were analyzed 

separately. The criteria for selecting the scenes were that the wind farm was installed 

and that the wind direction was within 90-270°. A SD of ~1.1 m s-1 and an R2 of 0.89 

was found, both for the wake scenes and for the rest of our dataset. We can therefore 

consider the impact of wake effects negligible in our comparison of SAR and in situ 
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winds. Wake effects may be reflected in the change of bias from -0.57 to 0.06 m s-1 after 

the wind farm installation. Direct scattering from the wind turbines did not impact our 

results, as the wind farm area was eliminated in the SAR images through masking. 

 

3.6.  Effects of spatial resolution 

To test the importance of spatial resolution in the SAR images for accurate wind 

retrievals, correlation analyses were carried out for the SAR images with a ~30 m and a 

~100 m spatial resolution, separately. The resolutions apply to the raw SAR data. Table 

2 shows a small improvement of SD and R2 for the scenes with a ~30 m resolution 

alone. Note that only 15 scenes were acquired with the ~100 m resolution, thus the two 

data types were not equally represented. 

 

3.7.  The wind resource 

The mean wind speed (U) computed from in situ measurements at Horns Rev was 7.6 m 

s-1, leading to a mean power density (E) of 422 W m-2 for our 97 samples (Table 2). 

Weibull fitting to the data gave the scale parameter A=8.5 m s-1 and the shape parameter 

k=2.5. Mean wind speeds were most accurately determined from SAR when the bias 

between in situ and SAR measurements was numerically small. Using in situ wind 

directions in combination with CMOD5 led to a mean wind speed identical to the in situ 

measurement. Results based on CMOD-IFR2 and CMOD4 showed under-predictions of 

U down to -6% and -14%, respectively. 

 

Estimated power densities from SAR were generally most accurate where SD was 

small. Wind directions from the meteorological mast in combination with CMOD-IFR2 
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yielded a very good agreement on E with the in situ measurements; an E of 421 W/m2 

was found from box averaging. E was under-estimated down to -29% for the CMOD4 

retrievals and over-estimated up to 27% for the CMOD5 retrievals. Estimates of E 

based on LG wind directions were possible to an accuracy of 17% for the supervised 

run and 21% for the automatic run, using CMOD-IFR2 and box averaging. 

 

Figure 8 shows the frequency distribution of in situ and SAR wind speeds found from 

our 97 samples. Also shown is the Weibull fit to the data. The Weibull A parameter is 

proportional to U, therefore the best approximations of occurred with the best estimates 

of U from the SAR data. The Weibull k parameter found from the SAR wind fields was 

always lower than k from the in situ measurements, as k varied within the range 1.9-2.3. 

 

4.  Discussion 

 

The aim of our study was to find the optimum method of SAR wind retrieval for wind 

resource assessment. The best approximation of SAR wind fields to in situ 

measurements was achieved using in situ wind direction inputs to feed the GMFs. Of 

the three GMFs validated at moderate wind speeds (2-15 m s-1), CMOD-IFR2 yielded 

the lowest SD and the best correlation. However, a negative bias was found for this 

GMF in line with previous studies by Horstmann et al. (2002b), who concluded that 

CMOD-IFR2 is not completely suited to fetch limited conditions. CMOD4 retrievals 

showed a larger negative bias in our study, whereas the bias on CMOD5 retrievals was 

negligible.  
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Our analysis reveals that the method used to compare spatial means of SAR winds to 

temporal means of in situ measurements impacts correlation analyses. Simple averaging 

of pixels in the SAR images led to better agreement between SAR and in situ 

measurements of wind speed than the scalar footprint approach. The same conclusion 

was previously drawn by Hasager et al. (2004). Scalar footprint averaging of pixels in 

the SAR wind maps is based on atmospheric physics. A shortcoming of the method may 

be that too few pixels were averaged within the scalar footprint, leading to a higher 

noise level than for simple pixel averaging. Work is ongoing to adjust the width of 

scalar footprints used in RWT, in agreement with laws of atmospheric physics, to 

ensure that a sufficient number of SAR samples are included. 

 

In situ measurements of the wind direction are not always available during the initial 

phase of planning an offshore wind farm, therefore the opportunity of estimating the 

wind direction from streaks in the SAR images was attractive. Detection of the wind 

direction from local gradients was possible to a SD of 21° when wind directions were 

selected manually amongst suggestions provided by the WiSAR program. Fully 

automatic retrievals using model data to select the appropriate direction yielded a larger 

SD. Wind speed retrievals based on the SAR wind directions were accurate to a SD of 

~1.3 m s-1, using manual supervision. A lot was gained on the wind speed accuracy, as 

LG wind direction retrievals were manually assisted; therefore we recommend this 

method to the fully automatic directional retrievals. The main reason for deviations of 

the automatic LG retrievals from the manually assisted retrievals was that interpolation 

was necessary between 6-hourly model runs used to resolve LG ambiguities. The model 

wind directions failed to give accurate directions in situations when a rapid change of 
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the wind field occurred (e.g. during a front passage). Further, the model resolution in 

space was coarser than the SAR resolution. In contrast to the in situ measurements, LG 

wind vectors had the advantage of showing spatial variability of the wind direction. At 

Horns Rev, this variability was limited. For other sites, variations may occur, as the 

wind is directed around topographical features such as mountains or islands. Examples 

of such variations in the form of gap flows and barrier jets have been given by Young & 

Winstead (2005).  

 

Winds from offshore directions showed the best agreement on wind speed between 

SAR and in situ measurements, due to a long fetch. An improvement of SD was also 

found for cases with near-neutral atmospheric stability. This was expected, as the GMFs 

used for SAR wind retrievals are developed for open seas with a neutral atmosphere. 

Note that the empirical GMFs used for SAR wind retrievals are based on comparisons 

of NRCS to wind speed measurement from buoys and ships, usually without any 

correction for atmospheric stability (Brown, 2000a). Uncertainties related to offshore in 

situ measurements and stability effects are thus inherent.  

 

Meteorological time series from offshore masts in Denmark show strong variations in 

the stability distribution from station to station with stable or unstable conditions up to 

50% of the time (Motta et al., 2005). The frequent occurrence of unstable conditions 

found here (57%) is therefore realistic, especially because the prevailing wind direction 

in our dataset was southeast (i.e. from the land). Unstable conditions are normally 

associated with buoyancy effects generated through heating of air parcels over land. We 

have investigated SAR scenes acquired at low to moderate wind speeds (<15 m s-1). 
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Stable and unstable atmospheric conditions occurred mainly at low wind speeds; 

therefore a relatively large impact of atmospheric stability effects was to be expected. 

Stability correction offshore is a notorious problem (e.g. Lange et al. (2004)). 

 

Satellite scenes acquired before the wind farm at Horns Rev became operational showed 

an improved accuracy on wind speed retrievals compared to the entire dataset. 

However, a further analysis of scenes obtained when the meteorological mast at Horns 

Rev was located in the wind farm wake revealed very similar accuracies in terms of SD 

and R2 for the wake and non-wake samples. Christiansen & Hasager (2005; 2006) have 

shown that reductions of the mean wind speed are detectable in SAR images up to 20 

km downstream of large offshore wind farms. In the present study, it is likely that 

nearly identical wake impacts were observed from the SAR and in situ measurements. 

 

None of the data bins investigated here showed errors large enough to justify 

elimination from our wind resource assessment. Instead, we recommend that the 

number of randomly selected samples is kept as high as possible in this type of study. 

The number of samples necessary for accurate wind resource assessment to an 

uncertainty of ±10% at the 90% confidence interval has previously been estimated 

(Barthelmie & Pryor, 2003; Pryor et al., 2004). To determine U and the Weibull A 

parameter, a total of 60-70 randomly selected samples are needed. Assessment of the 

Weibull k parameter and E requires a total of ~2000 samples. Satellite scenes are not 

acquired randomly in time. However, diurnal variation of the wind appears to be limited 

offshore and seasonal variability may be accounted for by selection of SAR scenes 

throughout the year.  
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The wind resource assessment presented here was based on 97 SAR scenes. We can 

thus consider our estimates of U and A robust. Wind statistics based on 3.5 years of data 

from the meteorological mast at Horns Rev have been reported by Sommer (2003). 

Extrapolation of the mean velocity profile down to 10 m leads to a U of ~7.6 m s-1, 

which corresponds exactly to our prediction. A longer time series of data is available 

from a light ship, which was operating at Horns Rev in the period 1962-80 (Troen & 

Petersen, 1989). From this data series, U at 10 m is 7.3 m s-1. Wind speeds exceeding 15 

m s-1 were not represented in our dataset, although they do occur at the site studied. This 

may be the reason for our under-prediction of U relative to the longer time series of 

data. From the same time series, E is 456 W/m2, and the Weibull parameters are A=8.3 

m s-1, and k=2.0 for roughness class 0 corresponding to oceans. The data are in very 

good agreement with our findings (Table 1), even though our dataset is too small for 

robust estimates of Weibull k and E. Obtaining a total of ~2000 SAR scenes for more 

robust wind power predictions is realistic as the cost of purchasing satellite data is 

currently decreasing. On the other hand, a lot of information about the wind resource 

may be gained from relatively few well-distributed SAR samples, simply by studying 

the spatial variability of the mean wind speed (e.g. Schneiderhan et al. (2005)). 

 

The results presented here are valid at 10 m. Projecting the power predictions to a 

higher level (i.e. turbine hub height) is attractive for wind farm developers and possible 

in RWT. However, some additional error may be introduced due to necessary 

assumptions about the logarithmic profile law and the sea surface roughness. Finally, 

weighting of the wind energy contribution from different wind sectors may be useful in 
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situations when the prevailing wind direction found from SAR samples and 

meteorological time series measurements differ (Choisnard et al., 2004). Further 

investigation of this approach is needed. 

 

5.  Conclusion 

 

Our systematic analysis shows that it is possible to estimate the wind resource 

accurately from a series of SAR images. The accuracy of mean wind speeds was 

determined by the bias on SAR wind retrievals. The accuracy on power prediction, in 

contrast, was determined by the standard deviation of SAR winds relative to ground 

truth data. The best approximation of SAR winds to offshore in situ measurements at 

Horns Rev was obtained from the model function CMOD-IFR2, using in situ wind 

directions as input (SD ~ 1.1 m s-1, R2 = 0.89). Satisfactory results were also achieved 

using wind directions obtained from local gradients in the SAR images, independently 

of in situ measurements (SD ~ 1.3 m s-1, R2 = 0.83). A negative bias was found for wind 

retrievals with CMOD-IFR2 and CMOD4, whereas CMOD5 retrievals were bias-free.  

The mean wind speed and power density found for a series of 97 randomly selected 

SAR scenes compared well to results obtained from in situ measurements, both for the 

SAR data acquisition times and for longer time series of in situ data. We therefore 

conclude that SAR images are valuable in offshore wind resource assessment, as they 

provide spatial information at an absolute accuracy sufficient in the early stage of wind 

farm planning. The absolute accuracy on SAR-based wind power prediction may 

improve in the future, as more SAR scenes are made available at a lower cost.  
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Figure captions 

 

Figure 1. Normalized radar cross section (NRCS) as a function of wind speed for the 

fixed radar incidence angle 40°. The relationship is plotted for three geophysical model 

functions (CMOD-IFR2, CMOD4, and CMOD5) with the SAR looking upwind and 

crosswind, respectively.  

 

Figure 2. Map of Denmark showing the location of Horns Rev in the North Sea. 

 

Figure 3. ERS-2 SAR wind field from 21 September 2000 at 21:30 UTC. At Horns Rev, 

the meteorological mast (star), the wind farm (trapezoid), and the 5 km square box used 

for pixel averaging are indicated. Arrows show the in situ wind direction (white) and the 

automatic local gradient wind vectors (black). Image streaks indicate the wind direction. 

and orthogonal internal waves are visible at the top left image corner. 

 

Figure 4. In situ wind directions versus SAR wind directions retrieved with a) the 

supervised local gradient method, and b) the automatic local gradient method for wind 

speeds >5 m s-1. In situ wind directions were measured at 62 m and averaged over one 

hour, centred at the SAR data acquisition times. 

 

Figure 5. Directional distribution of winds at Horns Rev found from in situ 

measurements, the supervised, and the automatic local gradient method (LG). 

Frequencies are given in % and directions in degrees from North (N=91). 
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Figure 6. In situ wind speeds versus SAR wind speeds retrieved with a) CMOD-IFR2, 

b) CMOD4, and c) CMOD5. In situ measurements were extrapolated to the height 10 m 

and averaged over one hour, centred at the SAR data acquisition times. Comparisons 

with the SAR wind speed maps were made through box averaging.  

 

Figure 7. In situ wind speed (15m) as a function of atmospheric stability, expressed by 

the bulk Richardson number, RiB. Intervals are defined as RiB < -0.4 for unstable 

atmospheres, -0.4 ≤ RiB ≤ 0.1 for near-neutral atmospheres, and RiB > 0.1 for stable 

atmospheres. Offshore winds (0-180°) and onshore winds (180-360°) are plotted 

separately. 

 

Figure 8. Frequency distribution of wind speeds at 10 m and Weibull fits for a) in situ 

measurements, and b) SAR winds retrieved with CMOD-IFR2 and in situ wind 

directions. The lack of SAR winds <2 m s-1 was accounted for in the Weibull fitting 

(N=91). 
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Table captions 

 

Table 1. Results of correlation analyses between SAR and in situ wind speeds: standard 

deviation (SD), bias, and correlation coefficient (R2). Also listed are mean wind speeds 

(U), Weibull A and k parameters, and the mean power density (E) computed from Eq. 

(1) with an air density of 1.23 kg m-3 (N=91). 

 

Table 2. Results of correlation analyses between SAR and in situ wind speeds found 

from CMOD-IFR2 wind retrieval and box averaging. The table shows the standard 

deviation (SD), bias, and correlation coefficient (R2), and the number of samples (N) for 

various groupings of SAR scenes. 
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SD [m s-1] Bias [m s-1] R2 U  [m s-1] A  [m s-1] k E  [W m-2]
Box CMOD-IFR2 1.11 -0.27 0.89 7.3 8.3 2.2 421

CMOD4 1.21 -1.06 0.84 6.6 7.4 2.2 309
CMOD5 1.34 0.04 0.86 7.6 8.6 2.1 487

Box, masked CMOD-IFR2 1.09 -0.36 0.89 7.2 8.2 2.2 405
CMOD4 1.20 -1.14 0.84 6.5 7.4 2.2 299
CMOD5 1.33 -0.06 0.86 7.5 8.5 2.1 469

Footprint CMOD-IFR2 1.44 -0.23 0.83 7.4 8.3 2.1 444
CMOD4 1.51 -1.02 0.77 6.6 7.5 2.1 328
CMOD5 1.81 0.13 0.78 7.7 8.7 2.0 535

SD [m s-1] Bias [m s-1] R2 U  [m s-1] A  [m s-1] k E  [W m-2]
Box CMOD-IFR2 1.39 0.27 0.82 7.8 8.8 2.3 496

CMOD4 1.27 -0.64 0.83 7.0 7.9 2.3 357
CMOD5 1.50 0.50 0.83 8.0 9.1 2.2 555

Box, masked CMOD-IFR2 1.36 0.16 0.83 7.7 8.7 2.3 476
CMOD4 1.26 -0.74 0.83 6.9 7.8 2.3 343
CMOD5 1.47 0.37 0.83 7.9 8.9 2.2 532

Footprint CMOD-IFR2 1.62 0.23 0.79 7.8 8.8 2.2 511
CMOD4 1.47 -0.68 0.79 7.0 7.9 2.2 365
CMOD5 1.79 0.49 0.79 8.0 9.1 2.1 585

SD [m s-1] Bias [m s-1] R2 U  [m s-1] A  [m s-1] k E  [W m-2]
Box CMOD-IFR2 1.73 0.18 0.76 7.7 8.7 2.1 510

CMOD4 1.54 -0.74 0.77 6.9 7.8 2.1 362
CMOD5 2.05 0.44 0.73 8.0 9.0 2.0 591

Box, masked CMOD-IFR2 1.70 0.07 0.76 7.6 8.6 2.1 491
CMOD4 1.51 -0.82 0.77 6.8 7.7 2.1 349
CMOD5 2.02 0.33 0.73 7.9 8.9 2.0 568

Footprint CMOD-IFR2 2.01 0.24 0.72 7.8 8.8 2.0 547
CMOD4 1.76 -0.69 0.73 7.0 7.8 2.1 384
CMOD5 2.42 0.55 0.68 8.1 9.1 1.9 653

U  [m s-1] A  [m s-1] k E [W m-2]
In situ data - - - 7.6 8.5 2.5 422

Wind direction from mast

Wind direction from LG, supervised

Wind direction from LG, automatic

Table 1



SD [m s-1] Bias [m s-1] R2 N
Onshore winds 1.10 -0.06 0.89 49
Offshore winds 1.08 -0.52 0.88 42

SD [m s-1] Bias [m s-1] R2 N
Stable 1.47 -0.86 0.88 11
Near-neutral 0.95 -0.13 0.93 22
Unstable 1.06 -0.26 0.85 52

SD [m s-1] Bias [m s-1] R2 N
No wind farm 0.93 -0.57 0.90 46
Wind farm 1.20 0.04 0.87 45

SD [m s-1] Bias [m s-1] R2 N
Spatial resolution ~30 m 1.00 -0.46 0.90 76
Spatial resolution ~100 m 1.15 0.71 0.85 15

Table 2
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