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ABSTRACT - Hexagonal close-packed (hcp) metals show a deformation behavior, 
which is quite different from that of materials with cubic crystalline structure. As a 
consequence, rolled or extruded products of magnesium and its alloys exhibit a strong 
anisotropy and an unlike yielding in tension and compression. In this work, the 
microstructural mechanisms of deformation in pure magnesium are modeled by visco-
plastic constitutive equations of crystal plasticity. Single crystals and textured 
polycrystals are analyzed numerically. By means of virtual mechanical tests of 
representative volume elements mesoscopic yield surfaces are generated. The linking of 
micro- and mesoscale provides a procedure for the simulation of the yielding and 
hardening behavior of arbitrarily textured solids with hcp structure such as extruded bars 
or rolled plates. 
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INTRODUCTION 

Magnesium alloys have attracted attention in recent years as lightweight materials for the 

transportation industry. Indeed, the low density of magnesium (1.74 g/cm3) and its 

relatively high specific strength make it an excellent candidate for applications in 

transportation industry, where saving of structural weight and reduction of fuel 

consumption are common challenges, see e.g. Göken et al. (2002), Kainer (2003), 



Neelameggham et al. (2005). A broad application of magnesium wrought alloys in 

modern vehicles and consumer goods requires reliable simulation tools for predicting the 

forming capabilities, the structural behavior under mechanical loads and the lifetime of 

the component. The respective constitutive models have to account for several anomalies 

of the mechanical behavior. Magnesium and its alloys show a pronounced strength 

differential effect at low homologous temperatures: the tensile strength is much higher 

than the strength in compression. Furthermore, magnesium exhibits a low ductility as 

well as strong deformation anisotropy - both demand for non state-of-the-art simulation 

techniques.  

The mentioned mechanical anomalies of magnesium originate from its micromechanical 

deformation mechanisms, which are determined by its hexagonal close-packed (hcp) 

crystallographic structure. Metals with hcp crystalline structures hold a reduced number 

of available slip systems compared to body-centered cubic (bcc) and face-centered cubic 

(fcc) lattices, making plastic deformation more difficult. With the asymmetric 

distribution of slip systems over the crystallographic reference sphere, various primary 

and secondary slip and twinning mechanisms can and have to be be activated at the same 

time. In contrast, in fcc metals usually only systems of one family become active. 

Therefore, modelling of the macroscopic deformation of hcp materials requires a careful 

investigation of the micromechanisms. Understanding the mechanisms of dislocation 

gliding and deformation twinning for single crystals and polycrystalline aggregates 

constitutes the fundament for modeling of the macroscopic mechanical behavior. To this 

end, microstructural experimental observations, mechanical tests and numerical modeling 

are combined.  

Mechanical tests on single crystals of hcp metals for various crystallographic orientations 

are sophisticated, and the respective literature is scarce. Wonsiewicz and Backofen 

(1967) as well as Kelley and Hosford (1968a, b) conducted thorough channel-die (plane 

strain) compression tests on Mg single crystals displaying its complex deformation 

behavior and revealing the active slip and twinning systems. The data of Kelley and 

Hosford are used in the present contribution to identify the model parameters of 

constitutive equations based on crystal plasticity. After a short review of the crystal 

plasticity model used, the identification of the respective model parameters is 



emphasized. In the second part of the contribution, the parameters are applied for 

predicting the mesoscopic behavior of polycrystalline representative volume elements 

(RVEs). In this way the microscopic features developing during plastic deformation of 

Mg are linked to the mesoscale and allow for the prediction of yielding behavior of 

arbitrarily textured solids, for example extruded bars or rolled plates. RVE calculations 

can be used to generate macroscopic yield surfaces. 

Due to limitations in computational power, simulations of the structural behavior of 

(macroscopic) polycrystalline structures cannot be performed effectively with models of 

crystal plasticity. They require phenomenological constitutive equations, e. g. a plastic 

potential and a flow rule to be used in the framework of rate dependent or rate 

independent plasticity. The presented method can be used to calibrate parameters of a 

plastic potential, namely the one recently proposed by Cazacu and Barlat (2004), which 

accounts for anisotropy and tension/compression asymmetry.  

 

MODELLING OF HCP METALS BY CRYSTAL PLASTICITY  

Deformation Mechanisms in Magnesium 

Planes and orientations of the hexagonal lattice are described here with the Miller-

Bravais indices related to a coordinate system of three basal vectors,   , and the 

longitudinal axis, c, which is the axis of hexagonal symmetry, see Fig. 1. Within this 

system, four axes are used rather than three orthogonal ones. Dislocations in a hexagonal 

lattice may be grouped in three families, 

a
1
,a

2
,a

3

a , c  and a + c , depending on the 

orientation of the slip plane and the slip directions, with the respective Burgers vectors of 

lengths a, c and a2 + c2 . The basal plane is characterized by its normal vector  

, the prismatic planes by n
  
n = 0001{ } = 1100{ } and the pyramidal planes by 

  
n = 1011{ } (π1), n = 1122{ } (π2) and n = 1012{ } (π3). The corresponding slip 

directions are equivalent to 
  
m = 1120  for basal, prismatic and π1 slip. Straining in 

direction of the c-axis can only be accommodated by c + a -systems, with a slip 

direction of 3211 for the three pyramidal slip systems, π1, π2 and π3. Beside the 

deformation caused by slip along crystallographic planes, deformation twinning is an 

important deformation mechanism for hcp metals. It might be of tensile or compressive 



nature, depending whether it results in an elongation or reduction or of the c-axis length. 

Which of the possible mechanisms will occur depends on the material, the temperature 

and on the strain rate. In the following, the authors focus on pure magnesium at room 

temperature. Deformation will be applied in a quasistatic way, such that strain rate effects 

are negligible.  

The knowledge about the relevant deformation mechanism in magnesium has improved 

over the years. In the first half of the last century the deformation mechanisms at low 

homologous temperatures were found to be mainly basal slip and pyramidal twinning, 

see Beck (1939). Later studies, realized in the 50’s and 60’s by Hauser et al. (1956), 

Reed-Hill and Robertson (1957) as well as Yoshinaga et al. (1963) revealed prismatic 

 
a  slip systems to be another active slip mode at room temperature. Basal and prismatic 

slip constitute only four independent shear systems which is not enough for 

accommodating arbitrary plastic strain. The amount of observed (pyramidal) twinned 

volume was found not to be sufficient for explaining the ductility of Mg at low 

temperatures as discussed by Tegart (1964). Slip systems having a deformation 

component in the c -direction were considered to play a role in plastic deformation: 

Stohr and Poirier (1972), Obara et al. (1973) and later Ando and Tonda (2000) have 

identified pyramidal 
 

a + c  as an active deformation mechanism at low homologous 

temperatures. 

Modeling activities for better understanding the features of plastic deformation in 

magnesium alloys started recently and concentrate on the alloy AZ31 and its variation 

AZ31B as the most common wrought magnesium alloys. Agnew et al. (2001) studied, 

within others, the relation between mechanical behavior and texture evolution of AZ31B. 

In order to reproduce similar textures than those observed experimentally, they had to 

account for 
 

a + c  slip. Furthermore, the authors concluded that prismatic 
 

a  slip 

should kept marginal for avoiding undesired effects in the simulated texture. Thus, they 

have considered only basal, pyramidal a + c  and tensile twinning on the π3-plane to 

describe the mechanical behavior simulations of AZ31B. This limitation turned out to be 

satisfying for simulating uniaxial compression tests of a plate for both, in-plane and 

through-thickness orientations. In later studies, Agnew et al. (2003) and Agnew and 

Duygulu (2005) added prismatic 
 

a  slip to the previous set of deformation modes. Non-



basal slip in 
 

a  direction has been shown to be necessary for modeling the in-plane 

anisotropy of AZ31B rolled plates at low temperatures. 

Staroselsky and Anand (2003) described the macroscopic mechanical behavior in tension 

and compression as well as the respective texture evolution of AZ31B extruded rods and 

rolled plates without considering any slip system having a deformation component 

oriented in 
 

c  direction. The considered deformation mechanisms, basal, prismatic, 

pyramidal 
 

a  and tensile twinning along the π3-plane, were enough to get good 

agreement between experiment and simulation. The systematic texture simulations of 

AZ31 conducted by Styczynski et al. (2004) showed that the best agreement between 

simulated and experimental textures is obtained by considering basal, prismatic, 

pyramidal 
 

a + c  and tensile twinning, which is the same as in Agnew et al. (2003) and 

Agnew and Duygulu (2005). Yi et al. (2006) also studied magnesium alloy AZ31 for 

understanding the relation between texture evolution and flow curves. The authors 

selected all three 
 

a  slip modes: basal, prismatic, pyramidal, as well as tensile twin and 

pyramidal 
 

a + c -slip. 

As a resume, the significant deformation mechanisms acting in Mg and its alloys are still 

subjected to discussion. Generally, the use of any a  and one a + c  slip system family 

additionally to basal and tensile twinning seems to be necessary. Since pyramidal 
 

a  

slip is equivalent to a combination of basal and prismatic a  cross-slip, this particular 

system will not be considered in the following calculations. The remaining primary 

systems, i.e. basal 
 

a , prismatic a , pyramidal a + c  plus tensile twinning on 

 
1012{ } are chosen here to model the mechanical behavior in the framework of crystal 

plasticity. These families include three basal, three prismatic, six pyramidal and six 

twinning systems. Table 1 summarizes the deformation modes (families of systems) used 

in the following. 



Table 1: Deformation modes considered in the present work 

Name Number of 
Slip Systems 

Plane Slip Direction 

Basal 
 

a  3 0001{ } 1120  

Prismatic 
 

a  3 1100{ } 1120  

Pyramidal 
 

a + c  (π2) 6 1122{ } 1123  

Tensile Twin (π3) 6 1012{ } 1011  

 

Constitutive Formulations 

The kinematical theory for the mechanics of crystals has been established in the 

pioneering work of Taylor (1938) and the theory by Hill (1966), Rice (1971) , Hill and 

Rice (1972). The model of crystal plasticity used here employs the framework of Peirce 

et al. (1982) and Asaro (1983a, b). The implementation in the commercial finite element  

code ABAQUS is based on the user-material routine of Huang (1991). 

The lattice of a crystalline material undergoes elastic stretching, rotation and plastic 

deformation. The latter is assumed to arise solely from crystalline slip. The total 

deformation gradient F is decomposed as  

 , (1) F = F* ⋅ Fp

where pF  denotes plastic shear of the material to an intermediate reference configuration 

in which lattice orientation and spacing are the same as in the initial configuration, and 

denotes stretching and rotation of the lattice. Superscript * always indicates 

the lattice part of the kinematic quantities in the following.  

* *= ⋅F V R*

The rate of change of pF  is related to the slip rate ( )αγ  of the α slip system by 

 p p 1 ( ) ( ) ( )α α α

α

γ−⋅ = ∑F F m n , (2) 

where the sum ranges over all activated slips systems, and the unit vectors ( )αm , ( )αn  are 

the slip direction and the slip-plane normal, respectively, in both initial and intermediate 

reference configurations, which transform to  



  (3) m*(α ) = F* ⋅ m(α ) , n*(α ) = n(α ) ⋅ F*−1

in the current deformed configuration, where 

 . (4) n*(α ) ⋅ m*(β ) = n(α ) ⋅ F*−1 ⋅ F* ⋅ m(β ) = n(α ) ⋅ m(β ) = δαβ

The velocity gradient in the current configuration is given by  

 . (5) 1−= ⋅ = +L F F D Ω

The symmetric stretching rate, D, and the skew vorticity or spin tensor, Ω, can be 

decomposed into lattice and plastic parts 

 , (6) D = D* + Dp , Ω = Ω* + Ωp

with 

 * * * * 1 p p ( ) *( ) *(, )α α α

α

γ−+ = ⋅ + = ∑D F F D m nΩ Ω . (7) 

The elastic properties are assumed to be unaffected by slip, i.e. the stress is determined 

solely by F*. Thus, the stretching rate, D, is related to the Jaumann derivative of 

Cauchy's stress tensor, T, by 

 
 
T
∇*

+ T 1 : D*( )= C : D* , (8) 

where C  is the tensor of elastic moduli. The Jaumann rate in eq. (8) is the corotational 

stress rate on axes that rotate with the crystal lattice, which is related to the corotational 

stress rate on axes rotating with the material by 

 . (9) ( ) (
*

* * *
∇ ∇

= − ⋅ + ⋅ = + − ⋅ − ⋅ −T T Ω T T Ω T Ω Ω T T Ω Ω )*

The crystalline slip is assumed to obey Schmid's law, i.e. the slipping rate ( )αγ  depends 

on T solely through Schmid's resolved shear stresses, 

 τ (α ) = n*(α ) ⋅
ρ0

ρ
T ⋅ m*(α ) , (10) 

where ρ0 and ρ are the mass densities in the reference and current states. The rate of 



change of the resolved shear stresses is 

 ( )
*

( ) *( ) * * * *( ):α ατ
∇⎡

= ⋅ + − ⋅ + ⋅ ⋅⎢
⎣ ⎦

n T T 1 D D T T D m α⎤
⎥ . (11) 

According to Peirce et al. (1982), the constitutive equation of slip is assumed as a 

viscoplastic power law,  

 
( ) ( ) ( )

( ) ( ) ( )
0 Y Y

sign
nα α α

α α α

γ τ τ
γ τ τ

⎛ ⎞
= ⎜

⎝ ⎠
⎟ , (12) 

where ( )
0
αγ  is a reference strain rate. ( )

Y
ατ  characterizes the current strength of the α slip 

system, and n is the rate sensitivity exponent. Strain hardening is characterized by the 

evolution of the strengths 

 ( )( ) ( )
Y hα α

αβ
β

τ γ γ= ∑ , (13) 

with hαβ being the self (α = β) and latent (α ≠ β) hardening moduli depending on Taylor's 

cumulative shear strain on all slip systems, 

 ( )

0

t

dα

α

γ γ= ∑∫ τ . (14) 

Slip systems are grouped into four families (Table 1) where twinning is treated like slip, 

see below. Interactions of the different active systems are handled with respect to the 

families of systems, not the individual system. It is furthermore assumed that 

 ( )γαα hh =  and ( )γαβαβ hqh = , (15) 

so that the hardening law can be written as 

 
t

( ) ( ) ( )
Y 0

0

h( ) q dα α
αβ

α≠β

⎛ ⎞
τ = τ + γ γ + γ τ⎜

⎝ ⎠
∑∫ β

⎟ . (16) 

with as integration constant. Hardening parameters as well as the values of 

the interaction parameters q

( )
0 Y (0)ατ τ=

αβ have to be calibrated by a fitting procedure considering 

both, test results of single crystals as well as polycrystals.  



Three different hardening laws are applied in the following, namely 

• linear hardening, 

 h γ( )= h0 , (17) 

• Voce hardening (Agnew et al., 2001, Yi et al., 2006), 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

∞∞ τ
γ

τ
τ

γ 00
0 exp1)(

h
hh , (18) 

with τ∞ being the saturation stress,  

• and particularly for deformation twinning, 
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The integrated functions of eqns. (17) – (19) presenting the different hardening 

characteristics are shown in Figure 2. The specific hardening law of eq. (19) was used for 

the description of deformation twinning in order to model the observed phenomenon of a 

sudden stress increase due to saturation of twinning after a certain amount of strain has 

been reached. Twinning is assumed to be geometrical irreversible and the respective 

systems can be activated by either tension or compression of the c-axis, depending on 

whether the deformation results in an elongation or a shortening of the c-orientation. 

Physically it is connected with a lattice rotation of a finite domain. This effect is difficult 

to realize within the framework of crystal plasticity. Hence, twinning is handled here as 

additional slip mechanisms of the type 1012{ }1011  and the reorientation of 

crystallographic planes due to rotation is not taken into account. This way of 

representation for twinning assumes that, as twinning has saturated, further plastic 

deformation issues only in the “untwinned” material. Furthermore, it is assumed that 

both, slip and twinning, can operate simultaneously at a material point. Deformation 

twinning modeled as crystallographic slip is supposed to follow Schmid’s law, see eqs. 

(12) - (14). Its hardening law is assumed as in eq. (19), and the polar character of 

twinning is taken into account with the restriction, 



 , (20)  τ Y
(α ) → ∞ for τ (α ) ≤ 0

allowing extension of the c-orientation (tensile twinning) only. 

 

Test Configurations and FE Models 

In order to study the deformation mechanisms other than the easy glide basal slip and 

tensile twinning, Wonsiewicz and Backofen (1967) as well as Kelley and Hosford 

(1968a, b) performed plane strain compression tests on pure magnesium single crystals 

and on textured magnesium samples cut out of a rolled plate. The authors used a channel 

die experiment (see Figure 2a): small samples (approx. 6×10×13 mm3) were compressed 

in a steel channel in one direction, while the second direction was constrained in 

displacement (rigid die) and the third one was free in order to realize a plane strain state. 

By changing the initial orientation of a (textured) sample, different slip and slip/twinning 

modes can be activated. The experimental results of Kelley and Hosford are used here as 

a reference. 

In the following, the loading direction is denoted as "1" and the constraint direction as 

"2". Table 2 gives an overview on the respective orientations for the case of the single 

crystal. The orientations with respect to compression loading and applied constraint for 

the polycrystalline case are indicated by two of the letters L (longitudinal or rolling), T 

(transverse) and S (short transverse or thickness), where the first letter denotes the 

loading direction and the second the constraint direction. 

Simulations of single crystal and polycrystalline aggregates presented in the following 

have been realized in the framework of finite elements using 8-node 3D elements. An 

equivalent discretisation has been chosen for single crystals and polycrystals: a crystal is 

described by one single finite element. Consequently, in a polycrystalline specimen the 

number of modeled grains corresponds with the number of finite elements. A 

representative volume element (RVE) has to consist of a sufficient large number of 

grains. However, in order to save computational time, 8×8×8 grains are considered in the 

RVE, each represented by an 8-node brick element having its individual material 

orientation, see Figure 2b. The die and the loading stamp are modeled by rigid surfaces. 



Friction between the sample and the rigid surfaces is accounted for, assuming a Coulomb 

friction coefficient of 0.05 for all tests. In case of the polycrystalline specimen, surfaces 

in extension direction have not been constrained. All simulations assume isotropic 

elasticity with Young’s modulus E=45000 MPa and Poisson ratio 3.0=ν . Since the 

experiments have been performed with quasistatic loading, the strain rate sensitivity 

exponent n in equation (12) is set equal to 50, making the simulation results almost rate 

independent. The reference strain rate for each slip system, ( )
0
αγ , is chosen to be 

compatible with the time scale in the FE simulations, and set to 10-3. 

 

Table 2: Definition of the different orientations used with the plane-strain 
compression tests on single crystals by Kelley and Hosford (1968a) 

 

test loading (1) constraint (2) 

A 0 0 0 1  1 0 1 0  

B 0 0 0 1  1 2 1 0  

C 1 0 1 0  0 0 0 1  

D 1 2 1 0  0 0 0 1  

E 1 0 1 0  1 2 1 0  

F 1 2 1 0  1 0 1 0  

G 0 0 0 1 at 45° 1 0 1 0  

 

In order to evaluate the mechanical response of single and polycrystals the following 

definitions of true stresses and true (logarithmic) strains are respectively used, 

 
0
11 11 11

11 0 0
11 11

ln ln 1
⎛ ⎞ ⎛+ Δ Δ

= = +⎜ ⎟ ⎜
⎝ ⎠ ⎝

l l l
l l

ε
⎞
⎟
⎠

, (21)   

 11
11 0

0 1

1
⎛ Δ

= +⎜
⎝ ⎠1

⎞
⎟

f lF
A l

σ . (22) 

Here,  and are the RVE’s original length in loading direction and original section 

with respect to loading direction, respectively.  denotes the absolute value of the load 

0
11l 0A

F



and  is the friction correction coefficient introduced by Kelley and Hosford 

(1968a,b). The above expression for true stresses is obtained in assuming constant 

volume of the RVE during plastic deformation. 

0.89=f

As in the channel die case, the simulations of uniaxial tension and compression tests in L, 

T and S-direction were performed on polycrystalline aggregates of 8×8×8 solid elements 

showing the same crystallographic orientations than presented in Fig. 5a. Periodic 

boundary conditions were applied on the surfaces of the RVE. In order to simulate yield 

loci and strain hardening in the (L,T)-plane, the plastic deformation of the same 

polycrystalline aggregate is investigated under plane stress conditions performing radial 

in-plane loading paths with different ratios of T L =arctanσ σ ρ , where ρ is the angle to 

the rolling direction (L) of the plate. For each loading path, several unloading steps have 

been realized in order to separate elastic and plastic mesoscopic strain. 

 

Deformation of Single Crystals, Textured Polycrystals, and Parameter 
Identification 

Establishing a model is the first significant step, determining its parameters is the second 

and often more complex one. The more advanced and sophisticated material models are, 

the more parameters do they include. Their identification requires inverse techniques, in 

which numerical simulations are calibrated by test data. Various procedures exist for this 

process, comprising manual fitting, trial and error, numerical optimization and neural 

networks, see e.g. the review articles of Mahnken (2004), Brocks and Steglich (2006). 

The determination of numerous parameters raises a lot of fundamental questions, namely 

on the uniqueness of a parameter set, the sensitivity of the mechanical response to 

variations of these parameters and the design of adequate tests capable of identifying 

certain model parameter. Neither of these problems can be elaborated here, as the focus 

is on the performance of the model and as test data had to be taken from literature. Based 

on these data, parameter identification has been executed as a systematic trial and error, 

yielding results that look reasonably but cannot claim to be the best possible fit. Though 

optimization methods appear as appropriate for obtaining a "best fit", they lack any 

physical background and evidence. Parameter identification in practice requires insight 

knowledge of constitutive theories as well as experimental mechanics. Optimization 



algorithms and software cannot replace this expertise. 

Apart from the material constants for isotropic elasticity, namely Young’s modulus and 

Poisson's ratio, the constitutive model presented above comprises three kinds of 

parameters per slip system, α, 

• two parameters of the viscoplastic law, ( )
0
αγ  and n, eq. (12), 

• between two and four hardening parameters, depending on the respective hardening 
law, τ0, τ∞, h0, γref, m, eqs. (17), (18), (19), 

• parameters of latent hardening, describing the interaction between the various slip 
systems, qαβ, eq. (16). 

For simplification, it has been assumed, that direct and latent hardening are identical for 

all slip systems of each of the four basic mechanisms, namely basal slip, prismatic slip, 

pyramidal slip and twinning. Linear hardening, eq. (17), with two parameters, τ0, h0, is 

assumed for basal slip, Voce hardening, eq. (18), with three parameters, τ0, τ∞, h0, for 

prismatic and pyramidal slip, and the combination of linear, τ0, h0, and power law 

hardening, eq. (19), with two parameters, γref, m, for tensile twinning. This adds up to 2 + 

2×3 + 4 = 12 parameters for direct hardening, see Table 3. Latent hardening is described 

by 4 × 4 = 16 interaction parameters, qαβ, see Table 4. 



Table 3: Direct hardening parameters, calibrated using experimental data of Kelley and 
Hosford  (1968a, b) 

 
basal 

 
a  

prismatic 

a  

pyramidal 

a + c  tensile twinning 

hardening law Linear 
eq. (17) 

Voce 
eq. (18) 

Voce 
eq. (18) 

linear + power law 
eqs. (17), (19) 

τ0 [MPA] 1 20 40 5 

τ∞ [MPA] - 150 260 - 

h0 [MPA] 10 7500 7500 200 

γref [-] - - - 0.11 

m [-] - - - 10 

 

Table 4: Interaction (latent hardening) parameters, qαβ, calibrated using experimental 
data of Kelley and Hosford  (1968a, b) 

α                    β basal 
 

a  prismatic a  pyramidal 
a + c  

tensile 
twinning 

basal 
 

a  0.2 0.5 0.5 0.5 

prismatic 
 

a  0.2 0.2 0.2 0.5 

pyramidal 

 
a + c  

1.0 1.0 0.2 0.25 

Tensile 
twinning 

1.0 1.0 0.2 0.25 

 

The parameters have been determined by fitting simulation results to the test data of 

Kelley and Hosford (1968a, b), namely plane-strain compression tests on single crystals 

of orientations A to G, see Table 2, and on specimens of orientations LT, LS, TL, TS, 

SL, ST, cut from a textured plate. Parameter identification has actually been a systematic 



procedure of trial and error, benefiting from a deeper insight into deformation 

mechanisms being active in the respective orientations of the single crystals. Different 

deformation modes are activated in the single crystal tests depending on the respective 

orientations of specimens. This allows for selectively identifying the hardening 

parameters for a particular slip mechanism, provided that the respective mechanism is 

exclusively activated in the model. This requires that the latent hardening parameters 

have values different from zero. The discussion of the simulation results below will 

elucidate this more clearly. The actual values of the latent hardening parameters cannot 

be concluded from the single crystal tests, however, but calls for the polycrystal test 

results. Due to the small number of grains used in the respective simulations and the 

merely qualitative mapping of the texture, only approximate predictions of the 

specimens' deformation behavior can be expected.  

A comparison of simulation and test results for single crystals of orientations A to G, see 

Table 2, is shown in Fig. 5. Beside a general qualitative agreement between experimental 

and simulated results, the simulations capture the following specific features: 

• Nearly identical stress-strain curves with high yield stress and strong hardening for 

orientations A and B, where the loading direction is 0 0 0 1 ;  

• Nearly identical stress-strain curves with - compared to A and B - lower yield stress 

for orientations C and D, where the constraint direction is 0 0 0 1 ; 

• Anomalous hardening behavior of orientations E and F with relatively low yield 

stress and almost no hardening at strains smaller than 6%, followed by a sudden 

increase in stress, 

• Saturation stress of orientation E exceeding that of A and B. 

• Saturation stress of orientation F about that of C and D. 

• Very low stress level for orientation G.  

The simulated stress increase in orientation F is delayed compared to that obtained in the 

tests. As the simulations aimed at a unique set of model parameters, this deviation 

between test results and model predictions has been accepted. Note also, that the 



occurrence of stress rising for orientation E is not unambiguous in the tests, either. 

Considering the general assumptions made with respect to the hardening laws and the 

considerably large number of hardening parameters summarized in Table 3, the 

accordance between test and simulation results is considered as quite good. 

The numerical simulations allow also for an analysis of the slip mechanisms causing the 

deformation of the single crystal samples. Fig. 6 shows the evolution of the relative 

activities of the various slip systems with increasing strain for each test. Relative activity 

indicates the contribution of a specific deformation mode to the plastic strain increment, 

as the latter is set to 1. Assuming non-zero values for the latent hardening parameters, the 

activation of the deformation modes for the different orientations occurs selectively. 

Only the curves A and B show more than one family of slip mechanisms acting at the 

same time, namely prismatic and pyramidal slip. Curves C and D are dominated by 

prismatic slip and curve G by basal slip over the whole range of strain. For orientations E 

and F the transition from twinning to pyramidal slip occurs within a very small range of 

strains. Orientations E and F favor plastic deformation resulting in an elongation of the c-

axis. Because of its low critical resolved shear stress (CRSS), τ0, tensile twinning is 

easily activated, and as saturation according to the power law eq. (19) occurs, elastic 

deformation increases the stresses until they reach the CRSS of pyramidal glide, which 

explains the sudden increase of stresses at about 0.06 strain in Fig. 5. This selectivity in 

the activation of slip mechanisms facilitates an efficient determination of the CRSS and 

the hardening parameter values of the different slip systems. 

The comparison of Kelley and Hosford's (1968b) plane-strain compression tests on 

polycrystalline samples with orientations LT, LS, TL, TS, SL, ST, cut out of Mg rolled 

plates with the simulation results is depicted in Fig. 7. The two letters denote the 

orientation with respect to the loading and the constraint direction, respectively; L is the 

longitudinal or rolling direction, T the transverse and S the short transverse or thickness 

direction. The general trend is well reproduced for all curves except for curve LT where 

hardening is too small compared to the experimental data. Due to the rolling process, the 

c-axes of the grains are orientated approximately parallel to the thickness direction of the 

plate with a slightly higher deviation in rolling than in transverse direction. This 

pronounced texture results in some qualitative similarities, of the flow curves between 



single crystals, Fig. 5, and polycrystals, Fig. 7. Polycrystals of orientations LT, TL, ST, 

SL show a monotonous hardening as the single crystals of orientations A, B, C, D. Those 

of orientations TS and LS exhibit the same striking hardening behavior as the single 

crystals of orientations E and F, namely relatively low yield stresses and little hardening 

at strains smaller than 4%, followed by a sudden increase in stress. Some differences of 

the hardening behavior of the polycrystals to that of single crystals are worth mentioning, 

however. The texture difference between the L and T orientation of the polycrystals is 

minor, see Fig. 4, which levels the differences between the respective curves in Fig. 7. 

The saturation stresses reached in the polycrystal specimens of orientations ST and SL 

are lower than those of the single crystals of orientations A, B , C and D, respectively, 

and the differences in the stresses of LS and TS are smaller than those between E and F. 

The curves A, B, C, D in Fig. 5 saturate, whereas the curves LT and TL in Fig. 7 do not. 

The specific shapes of the flow curves can be understood by the analysis of activated slip 

systems discussed below. 

Despite the qualitative similarities in the hardening behavior between single crystals and 

textured polycrystals, the test data from polycrystals have great importance for the 

calibration of the material parameters, particularly the latent hardening parameters, qαβ. 

Due to the varying orientations of grains in the RVE, more than one deformation mode 

has to be activated at the same time. This is manifested by Fig. 7, which shows the 

“integral” activity of the respective slip systems in the RVE. The above statement even 

holds on the level of a material point, where (different from the single crystal case) 

several slip mechanism are active. Hence, the latent hardening parameters affect the 

macroscopic response of the sample significantly and have to be identified from the tests 

on polycrystals rather than on single crystals.  

The relative activation of slip systems shown in Fig. 8 helps in understanding the flow 

curves of Fig. 7. In the specimens of orientations LT and TL, about 60% of the plastic 

deformation results from prismatic slip with Voce hardening (τ0 = 20 MPa, 

τ∞ = 150 MPa), nearly 30% from basal slip with linear hardening (τ0 = 1 MPa). For the 

specimens of orientations SL and ST, pyramidal (Voce hardening, τ0 = 40 MPa, 

τ∞ = 260 MPa) and basal slip (linear hardening) contribute nearly equally by about 40% 

and prismatic slip (Voce hardening, τ0 = 20 MPa , τ∞ = 150 MPa) by about 20%. The low 



yield strength and hardening for the orientations LS and TS is due to the activation of 

tensile twinning (τ0 = 5 MPa), which contributes to the plastic deformation by about 

40%, and the sudden increase of stresses beyond 5% strain results from the saturation of 

twinning going along with the activation of pyramidal slip. 

 

Yield Surfaces of Polycrystals 

Simulations of the structural behavior of polycrystals cannot be performed effectively 

with crystal plasticity models on the microscale but require phenomenological 

constitutive equations for yielding and hardening under multiaxial stress states. These 

equations are established on a meso level. In micromechanical modeling, the transfer 

from the micro to the mesoscale is performed by representative volume elements (RVEs), 

which are designed to represent typical periodic microstructures of polycrystalline 

materials.  

Kelley and Hosford (1968b) have determined yield loci in the (L,T)-plane of rolled plates 

experimentally for varying levels of the largest principal strain, εI, as 1, 5, 10%, using the 

experimental results presented in Fig. 7 as well as uniaxial tension and compression tests 

in L-,T- and S-direction. A comparison of test and simulation results is presented in 

Table 5. 

Table 5: Yield stresses of textured polycrystalline specimens in L-, T-, and S-orientation 

at three strain levels under uniaxial tension and compression; comparison of test results 

(Kelly and Hosford, 1968b) with results of RVE simulations  

1% principal strain 5% principal strain 10% principal strain 
 test  sim. test  sim. test  sim. 

L-tens. [MPa] 68.3 94.2 100.0 162.0 - 190.8 
S-comp. [MPa] 66.2 91.7 127.6 166.1 147.5 181.0 
T-tens. [MPa] 129.6 123.4 173.7 198.9 194.4 214.4 
L-comp. [MPa] 26.9 27.1 54.5 81.2 146.2 159.4 
T-comp. [MPa] 28.3 52.8 71.7 102.7 172.4 203.5 

 

The simulated stresses in Table 5 overestimate the experimental ones considerably in 



almost all loading configurations and at all strain levels. This appears very much like a 

systematic error, too pronounced for being wiped off. The effect of boundary conditions 

and friction has been investigated by the authors and found to be of less significance. 

Any other explanation for the observed misfit is still missing. Nevertheless, the two most 

notable aspects of the yield behavior for magnesium plates are reproduced by the 

simulations, namely anisotropy and tension/compression asymmetry. In view of a 

number of approximations and imponderabilities in the simulations, particularly with 

respect to the parameter identification and the mapping of the texture, as well as possible 

uncertainties in the evaluation of the test data, the coincidence of experimental and 

numerically simulated tests is satisfying and encouraging for the generation of 

qualitatively realistic yield surfaces of the plate material. 

Fig. 9 shows subsequent yield surfaces for mesoscopic stresses under increasing 

equivalent plastic strain from pε = 0.01 to 0.10 with an increment of 0.01. Though the 

authors are aware that von Mises equivalent strain is obviously not an appropriate 

measure for characterizing the mesoscopic hardening, they chose it nevertheless lacking 

a more adequate one. At low values of plastic strain the RVE exhibits a strong anisotropy 

and a high asymmetry of yielding between tension and compression while, with 

increasing plastic strain the anisotropy and yielding asymmetry reduce considerably. 

The evolution of the accumulated shear strain of the four slip systems in the RVE is 

presented in Fig.10 in dependence on the angle, ρ , of the loading path. The contributions 

of basal and prismatic slip oscillate with a period of approximately 180° and a phase shift 

of about 90° to each other. Both deformation modes act equally in tension and 

compression. The phase shift of 90° points out that both, basal and prismatic slip act in 

a  direction and compete with each other. Even though the texture of a rolled plate is 

not actually favorable for basal slip, it is, in average over the whole range [ ]0 ,360∈ ° °ρ , 

the most active deformation mode due to its extremely low CRSS. Interestingly, the 

relative contribution of basal slip to the accumulated shear strain tends to decrease with 

increasing strain while that of the prismatic slip tends to increase. This is probably also 

related to difference in CRSS for both deformation mechanisms implying that basal slip 

is more active at the beginning of the deformation, where stresses are lower, than at the 

end, and prismatic slip becomes more active at higher strains. As expected, tensile twin is 



activated between 120° < ρ < 330°, only, where compression is present and, due to the 

texture, elongation in c-direction is favored. The highest twinning activity is concentrated 

in the range between 180° < ρ < 270°, where compression states exist in both 

longitudinal and tangential direction of the plate. Pyramidal slip is significantly active in 

the range between 0° < ρ < 90°, where shortening along the c-axis is favored. Following 

the same principle as in orientations E and F in Fig. 5, as well as LS and TS in Fig. 7, 

pyramidal slip +a c  between 120° < ρ < 330°, is absent at low strains and activated at 

higher strains once twinning saturates.  

  

Phenomenological Yield Potential 

As stated above, phenomenological constitutive equations for yielding and hardening are 

required for simulations of the macroscopic structural behavior. The numerially 

generated isocontours shown in Fig. 9, have hence to be fitted by an analytical expression 

of the yield potential and an evolution equation for this yield potential has to be 

established. A phenomenological yield potential for textured magnesium has to account 

for both anisotropy and tension/compression asymmetry. Hill (1948, 1950) has 

generalized the von Mises (1913) criterion for anisotropic materials. It predicts yield loci, 

however, which are centered about the origin, and is hence not suited for hcp metals 

deforming primarily by twinning. Accounting for the asymmetry of yielding in tension 

and compression, that is shifting the center of the yield surface out of the origin of the 

deviatoric plane, requires including the third invariant of the stress tensor (Drucker, 

1949),  

 ( )
3

0 0 02
2 3≡ − = Yf J cJ 3τ . (23) 

Cazacu and Barlat (2004) have shown, that this yield criterion describes well the 

asymmetry of yielding due to activation of twinning. and are generalizations of the 

second and third invariant of the stress tensor for orthotropic materials, containing 6 and 

11 model parameters, respectively, in the general three-dimensional case. The total 

number of model parameters reduces to 7 in the plane stress case. Different from the 

yield criteria of von Mises and Hill, convexity of the yield surface is not a priori ensured 

and has therefore to be introduced as an additional side condition, while identifying the 

0
2J 0

3J



respective parameters, in order to fulfill Drucker’s postulate of material stability 

(Drucker, 1964). The respective investigations based on the micromechanically yield 

surfaces of Fig. 9 are in progress.  

 

CONCLUSIONS   

A crystal plasticity model has been used to study the deformation mechanisms of an hcp 

metal. Simulations of plane-strain compression tests and uniaxial tension and 

compression tests revealed that the experimentally observed phenomena of magnesium 

and its alloys, namely a strong anisotropy and a significant tension/compression 

asymmetry, can be understood considering four deformation mechanisms and their 

activation: three basal slip systems, three prismatic slip systems, six pyramidal slip 

systems and six tensile twinning systems. Twinning has clearly been identified for being 

responsible for the tension-compression asymmetry which is observed in textured rolled 

plates. Material parameters have been calibrated based on single crystal and polycrystal 

experiments. 

Once the material parameters of crystal plasticity have been identified, they can be used 

for predicting the mechanical response of arbitrarily textured polycrystalline materials by 

building aggregates of single crystals. The respective transfer from the microstructure to 

a phenomenological representation of yielding of polycrystalline samples has been 

successfully verified. Establishing a phenomenological yield potential and a respective 

hardening rule for hcp materials is the future step in the modeling chain. The presented 

methodology links investigations on the micro-level with simulation techniques used on 

the lengthscale of engineering structures. Hence it can be understood as a link between 

micro- and macromechanics. 
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FIGURES 

 

 

Figure 1: Slip planes in hcp material: basal and prismatic planes (left), pyramidal (π1: 

 
0111{ }, π2: 

 
1122{ }, π3: 

 
1012{ }) planes (right)  

 

Figure 2: Hardening laws used in the present investigations 

 

 



 

Figure 3: Plane-strain compression test: principle (a) and FE model of a polycrystal (b)  
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Figure 4: Experimental (Kelly and Hosford, 1968b) (a) and simulated (0001) pole figures 
(b) of pure magnesium rolled plate material 
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Figure 5: Plane-strain compression tests of pure Mg single crystal: simulation results 
and tests (Kelly and Hosford, 1968a). 
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Figure 6: Relative activity of slip mechanisms in dependence of the initial 
crystallographic orientation of the specimens in simulated channel die tests of Mg single 
crystals 
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Figure 7: Plane-strain compression tests of textured Mg rolled plate material, 
simulation results and tests (Kelly and Hosford, 1968b). 
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Figure 8: Relative activity of slip mechanisms in dependence on the initial orientation 
of the specimens in simulated channel die tests of textured Mg rolled plate samples 
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Figure 9: Iso-contours of current mesoscopic yield stress of a textured polycrystalline 
RVE under plane-stress biaxial loading ( pε =0.01, …, 0.1) 
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Figure 10: Contributions of crystallographic deformation modes at 0.01, 0.05, and 0.1 
equivalent plastic strain for plane-stress biaxial loading of a textured polycrystalline 
RVE  
 


	graff
	Graff-intjournplast

