

Later today: Kaisa Kraft -Multiplatform detection of filamentous cyanobacteria blooms in the Baltic Sea

Utö Atmospheric and Marine Research Station: Physical, chemical and biological drivers of diurnal carbon cycle in the coastal region

Martti Honkanen¹, Jens Daniel Müller^{2,4}, Jukka Seppälä³, Gregor Rehder⁴, Sami Kielosto^{1,3}, Pasi Ylöstalo³, Timo Mäkelä¹, Juha Hatakka¹ and Lauri Laakso^{1,5}

¹Finnish Meteorological Institute, ²ETH Zurich, Switzerland, ³Finnish Environment Institute

⁴Leibniz Institute for Baltic Sea Research Warnemünde, Germany, ⁵North-West University, South Africa

Motivation: time of the sampling may matter i.e. why fixed-location flow-through systems are needed

Carbon dioxide (CO₂)

- Important greenhouse gas
- Generates ocean acidification
- Oceans are generally CO₂ sinks, whereas coastal seas are diverse systems

Air-sea flux of CO₂

 Depends on the partial pressure (pCO₂) difference in sea and water

Aims of the study

- Determine the magnitude of the pCO₂ daily variability at Utö during different seasons
- Determine the driving processes behind this variability
 - Biological transformations
 - Temperature changes
 - Air-sea exchange of carbon
 - (Upwelling is omitted as it is random in time)
- Assess the possible error introduced if pCO₂ is sampled only once a day

Utö Atmospheric and Marine Research Station and its continuous inorganic carbon measurements

- Located in the southern Archipelago Sea
- Flow-through system
 - Sunburst SuperCO₂ for pCO₂:
 - Showerhead equilibrator
 - Infrared gas analyzer
- Eddy covariance flux tower
 - Direct measurement of air-sea exchange of CO₂
- ICOS ATM station
 - Atmospheric CO₂

pCO₂ annual cycle during the study period 2018–2019

Observed diurnal pCO₂ variation

Winter:

- Low variation, monthly median amplitude less than 4 µatm
- Spring-Autumn:
 - Sinusoidal form
 - A minimum in afternoon
 - A maximum in night
 - Monthly median amplitude up to 30 µatm

Biological pCO₂ diurnal variability

 $_2CO_2$ deviation from the daily mean (μ atm)

- Calculated using continuous oxygen data
 - We assumed common oceanic ratio between oxygen and carbon
- Closely similar sinusoidal signal during productive season as observed from direct pCO₂ measurement
 - Most pCO₂ diurnal signal is driven by biological transformations

*p*CO₂ diurnal variability generated by the temperature changes

2CO₂ deviation from the daily mean (µatm)

- Calculated as how much pCO₂ is changed if it is governed by temperature alone
- Relatively small effect
 - Monthly median amplitude is less than 5 µatm in May-July
 - Sinusoidal form that partly compensates the biological component
- However, some large variation in 10th and 90th percentiles in summer, up to 30 μatm

pCO₂ diurnal variability generated by the air-sea exchange of CO₂

 $_2CO_2$ deviation from the daily mean (μ atm)

- Calculated from the flux data
- September-November close to 10 μatm daily change, when pCO₂ gradient is large and wind is high
 - ➤ The estimate is sensitive to the mixed layer depth
- December-August, less than
 5 µatm monthly median
 amplitude

Effect on the net air-sea CO₂ exchange

- The flux was calculated for the theoretical case, where only one measurement is considered for each day
- Highest effect during early hours and afternoon
 - Up to ±12 % effect on the net flux
- Could provide information on the error estimate of the voluntary observing ship measurements on strickly scheduled routes

Summary

- pCO₂ diurnal cycle at Utö is mainly driven by biological processes with highest monthly median amplitudes of up to 30 µatm in Jul-Oct
 - Other drivers generally smaller
 - However, single days can show large changes due to e.g. upwelling (not dealt here)
- Sampling time may cause up to ±12 % error in the flux estimate
- Acknowledgments:
 - FINMARI, JERICO RI, BONUS INTEGRAL, SEASINK and ICOS
- More information:
 - Honkanen et al.: The diurnal cycle of pCO₂ in the coastal region of the Baltic Sea,
 Ocean Sci., 17, 1657–1675, https://doi.org/10.5194/os-17-1657-2021, 2021.

New paper in preparation: 5 years data from a fixed ferrybox location

