Determination of pH and pCO2

 new autonomous instrumentation for Ferrybox

Kai Sørensen¹, Emanuele Reggiani¹, Michel Masson², Andreas Krüger², Marit Norli¹, Richard Bellerby¹, Pierre Jaccard¹, Evgenij Yakushev¹, and Tobias Steinhoff³.

- ¹⁾Norwegian Institute for Water Research
- ²⁾Franatech GmbH
- ³⁾GEOMAR

Outline

- The Ferrybox network to be used for ocean acidification studies in Norway
- New approach/idees and sensor for carbon systems sensors Ferrybox
- Some preliminary tests of the new systems
- Future work

Motivation

- Assessment of anthropogenic impact on marine carbon system is increasingly demanding
- Support the national monitoring program of marine acidification in Norwegian waters
- Increase knowledge about the inter-annual changes of pH and pCO₂ in a challenging area
- High frequent measurements is needed of carbon speciation in the surface water
- Deployment of cost effective instrumentation capable to detect changes at the level necessary to understand and estimate future trends of ocean acidification

Norwegian Ferrybox network

Core water sensors

- Inlet temperature
- Temperature
- Salinity
- Turbidity
- Oxygen Biogeochemical
- Chl fluorescence
- PC Fluorescence
- CDOM Fluorescence
- pH and pCO2Water samples
- Chl-a
- TSM
- Turbidity
- CDOM
- Nutrients
- Algal pigment absorbtion
- Algae taxonomy
 Deck sensors
- Uppwelling Radiance
- Down welling radiance
- Downwelling Irradiance
- Wind

Inter-annually variation in pCO₂ in the Arctic waters

From the national monitoring program in the Arctic

Based on water sampling and At, Ct, pH measurements

Ferrybox pCO2 and pH

- A new installation combining autonomous pCO₂ and spectrophotometric pH detection will be installed in 2013.
- pH is based on an effective set-up for high resolution absorbance detection of a suitable dye injections. Developed at NIVA.
- pCO2 using combined membrane technology and a new solid state detector. Developed at Franatech.
- Couple the two measurement systems in a compact, reliable Ferrybox set-up requiring minimal maintenance, optimal calibration to performed the needed requirements.

Recommendations for accuracy and precision of pCO2 meas.

Accuracy. (Values in brackets are calculated by me from the other values)

Demands	Range	Accuracy	Accuracy in
	(μ <u>Atm</u>)	μ <u>Atm</u>)	%
Shall	<= 400	+/-4	(+/-1%)
Shall	> 400	(+/- 4 to +/- 20)	+/-1%
Should	<= 400	+/-2	(+/- 0.5 %)
Should	>400	(+/- 2 to +/- 10)	+/- 0.5%

Precision: (Values in brackets are calculated for what in the text)

Demands	Range	Accuracy	Accuracy in
	(µAtm)	(μ <mark>Atm</mark>)	%
Shall	<= 400	+/-2	(+/- 0.5%)
Shall	> 400	(+/- 2 til +/- 10)	+/- 0.5 %
Should	<= 400	+/-1	(+/- 0.25 %)
Should	>400	(+/- 0.5 to +/-5)	+/- 0.25%

Ref: Ocean Observatories Initiative, 16.11. 2010.

Preliminary wish list for pCO2 and pH sensor in a Ferrybox

- High accuracy and precision
- Small and cost effective
- Easy installation
- Onboard calibration (Cal. gas, CRM)
- Low calibration frequency
- Fast response time
- Flow trough system (easy water in and out)
- Easy maintenance (membranes, cleaning, dyes...)
- Leakage detection stop of pumps
- Online operational software interfaced with Ferrybox SW (SST, SSS, pump stop in harbour)
- Handle variable pressures in the Ferrybox due to e.g. blocking of inlets/outlets

Franatech pCO₂ systems for Ferrybox installations

- Membrane based system
- Solid state detector
- Calibration on-board
- Easy to maintain/replace

- Flow through system
- Uses external pump (Ferrybox)
- Water leakage detector
- Internal logging and on-line SW
- Communication with Ferrybox

Kai Sørensen, NIVA kai.sorensen@niva.no

Ongoing technical tests

- Mechancial test on the ship
 - Optimal flow
 - Membrane pressure test
 - Ferrybox pump test
- Technical tests of response time
- Linearity, accuracy and precision
 - compared with calculated pCO2 from At, Ct, pH
 - compared to GO pCO2 systems
- Calibration with NOAA high precision gas
- Field comparison with GO-pCO2 system
- Long term performance test

Preliminary linearity test of Franatech pCO2 sensor with pCO2 calculated from pH, Ct, At as "true" values.

FB: pH(NBS) and Alk: $r^2 = 0.9904$

FB: pH(Tot) and Alk: $r^2 = 0.9854$

FB:pH(NBS) and TIC: $r^2 = 0.9914$

FB: pH(Tot) and TIC: $r^2 = 0.9869$

What is the true pCO2value?

- There are uncertainty in the CO₂SYS calculations equations (10%)
- Good linearity over the concentration range 0-2000 ppm

Response test

Preliminary test show typically < 5 min

Field test comparing with the GO-systems (GEOMAR)

Field tests between GO_pCO2 and Franatech

+/- 2 % accuracy of the calibration gasses

Comparisions of GO_ pCO2 and FT_pCO2 in a short term test (24 h)

FT_pCO2 vs GO_pCO2 after applying a new calibration

Calibrations issues

- Calibration with high precision gas to have the best absolute accuracy
- Wet or dry gas calibration
- Compensation for water vapor
- Calculations from dry to wet
- Compensation for pressure differences

Needs for a standard operation procedure (SOP) for membrane systems in Ferrybox installations!

Development of a miniaturized *in situ* detection system for pH and carbonate

Spectrophotometric pH detection

- calibration free
- precision: < 10⁻³ pH
- accuracy (2): ±2.5x10⁻³ pH
- drift: within precision
- sampling interval: 20 s
- ideal solution onboard VOS
- underway/discrete

Further improvement:

 direct UV carbonate detection within a pCO₂ detection manifold for complete carbonate system speciation

Test of the miniaturized pH detection system prototype on a research vessel cruise April 2012

Meteor 87/1, station coord.: -11, 61.5 • t0 • ... one month later

Short term precision (1h): 0.0005

Medium/long term precision (1 day/1 month): 0.001/ to be assessed (better than CRM or combined Ct/At/pCO₂ could provide)

Combined approach pH and pCO2 into the Ferrybox

Physically implemented into the pCO2 will be tested!

pH and carbonate

| Configuration | Total | Tota

pCO2

Combined in a common labview Software with data from the Ferrybox like SST, pressure e.g..

Future work

- Combine pH and pCO2 into one system
- Deployment for long term tests on three ship routes (seasons, years)
 - Kattegat/Skagerrak (low saline water, high Chl-a)
 - Coastal areas (Fjords, Rivers mouth)
 - Barents Sea (cold waters/Arctic)
- Long term technical experience
- Long term calibrations experience (NOAA-gas)
- Establish the overall precision and accuracy
 - Comparison and implementation in the monitoring program
 - Hopefully implementation into the monitoring programs?
- Comparisons with other systems (Jerico-activity?)
 - GO-System, other membrane systems and other detectors

