

Area of interest & purpose

- biological monitoring: MZB, fish, nutrients, sediment, water
- habitat mapping
- waverider buoys and wave gauges

DK

Main aims

- improve and increase the database of traditional point measurements by means of continuous data
- satisfy reporting duties required by the European strategies
- gain further knowledge on seasonal water quality and nutrient dynamics
- input for the calibration and validation of ecosystem models

FerryBox specifications

Stainless steel tray on vessel

Parameters

- Physico-chemical: temperature, salinity, pH, dissolved oxygen, turbidity
- Chl a fluorescence and pigments for algae groups
- Nutrients: NH₄, NO₂/NO₃, SiO₂, o-PO₄
- Automatic water sampler
- Anti-fouling concept
- Coarse and cross-flow filter
- GPS, communication via LTE

Nutrient analysis

Burchana measurements at storm surge barrier in the Ems river

- wet-chemistry analysers applying patented Loop Flow Analysis
- OPA method for ammonium and UV photoreduction for the other nutrients

Nutrient analysis

- NO₃: applying longer tubes in the hydraulic loop
- Low (0-20 μM/l): coastal zone
- High (0-700 μM/I): estuaries

Quality management

- Common laboratory standards, e.g. for
 - duration of sample storage (fresh, next wekk, 6 months...)
 - conservation (filter, acid,...)
 - offset between FB and laboratory instruments
- Interlaboratory comparison

MicromacC calibration ranges

MicC 1 (UV-photored., NH₃ OPA)

NH₄: 0-30 μmol/l , off scale samples up to 90 μmol/l

PO₄: 0-6.5 μmol/l, off scale samples up to 20 μmol/l

MicC 2 (UV-photored.)

NO₂: 0-7 μmol/l, off scale samples up to 35 μmol/l

SiO₂: 0-18 μmol/l L, off scale samples up to 90 μmol/l

NO₃-Low: 0-20 µmol/l L, off scale sample up to 100 µmol/l

 NO_3 -High: 0-700 µmol/l